ROC-кривая - ορισμός. Τι είναι το ROC-кривая
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι ROC-кривая - ορισμός


ROC-кривая         
ROC-кривая (, рабочая характеристика приёмника) — график, позволяющий оценить качество бинарной классификации, отображает соотношение между долей объектов от общего количества носителей признака, верно классифицированных как несущие признак (, TPR, называемой чувствительностью алгоритма классификации), и долей объектов от общего количества объектов, не несущих признака, ошибочно классифицированных как несущие признак (, FPR, величина 1-FPR называется специфичностью алгоритма классификации) при варьировании порога решающего правила.
Кривая забывания         
  • Графическое представление кривой забывания
Кривая забывания или кривая Эббингауза была получена вследствие экспериментального изучения памяти немецким психологом Германом Эббингаузом в 1885 году.
Жордана кривая         
  • Кривая Жордана на плоскости с положительной мерой Лебега.
ОТОБРАЖЕНИЕ ОДНОМЕРНОГО ПРОСТРАНСТВА В МНОГОМЕРНОЕ
Плоская кривая; Кривые; Линия (кривая); Простая дуга; Простая линия; Кривая Жордана; Жорданова кривая; Трансцендентная кривая; Аналитическая кривая; Жордана кривая; Трансцендентные кривые; Путь (математика); Жорданова дуга; Замкнутая кривая; Простая кривая; Кривая линия

жорданова кривая, геометрическое место точек М (х, у) плоскости, координаты которых удовлетворяют уравнениям: х = φ(t), y = ψ (t) где φ и ψ - непрерывные функции аргумента t на некотором отрезке [a, b]. Иначе, Ж. к. есть непрерывный образ отрезка [а, b]. Это определение является одним из возможных математически строгих определений понятия непрерывной кривой. Однако Ж. к. может иметь весьма мало общего с тем представлением, которое обычно связывается с кривой; например, Ж. к. может проходить через все точки некоторого квадрата.

Если точки М (х, у) Ж. к., соответствующие различным значениям t, различны между собой, то такая Ж. к. называется простой дугой. Иными словами, простая дуга есть Ж. к. без кратных точек. Простая дуга является гомеоморфным (см. Гомеоморфизм) образом отрезка. Если же точки Ж. к., соответствующие t = а и t = b, совпадают, а все остальные точки между собой различны и отличны от М [φ(a), ψ(a)], то Ж. к. называется простым замкнутым контуром. Такая Ж. к. является гомеоморфным образом окружности.

Французский математик М. Э. К. Жордан, по имени которого названа Ж. к., доказал в 1882, что всякая замкнутая Ж. к. без кратных точек делит плоскость на две области, из которых одна является внутренней по отношению к этой кривой, а другая внешней. Это предложение носит название теоремы Жордана.

С. Б. Стечкин.

Τι είναι ROC-кривая - ορισμός